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SECTION A

Answer ALL questions





2 *10 = 20

1. Show that 
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2. Define : Sigma field

3. Mention any two properties of set functions.

4. If  
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5. Define Singular measure.

6. State the theorem of total probability.

7. If E (Xk) is finite, k > 0, then show that E (Xj) is finite for 0 < j < k.

8. Let X1 and X2​ be two iid random variables with pdf  
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. Find V(X1 + X2).

9. Show that E ( E ( Y | ġ ) ) = E (Y).

10. Define Convergence in rth  mean of a sequence of random variables.

SECTION B

Answer any FIVE questions






5 * 8 = 40.

11. Show that finite additivity of a set function need not imply countable additivity.

12. Consider the following distribution function.
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      If μ is a Lebesgue measure corresponding to F, compute the measure of 


a.) 
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b.) 
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13. State and prove the Order Preservation Property of integral of Borel measurable functions. 

14. Let μ be a measure and λ be a singed measure defined on the σ field 
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 of subsets of Ω. Show that λ << μ   if and only if | λ | << μ.

15. State and prove Borel – Cantelli lemma.

16. Derive the defining equation of conditional expectation of a random variable given a σ field.

17. Let Y1,Y2,…,Yn be n iid random variables from U(0,θ). Define

 Xn = max (Y1,Y2,…,Yn). Show that 
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18. State and prove the Weak law of large numbers.

SECTION C

Answer any TWO questions.





  2 * 20 = 40 

19.  a.) Show that every finite measure is a σ finite measure but the converse need not

be true.

             b.) Let h be a Borel measurable function defined on
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      then show that 
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(8+12)
20. a.) State and prove the extended monotone convergence theorem for a sequence  

           of Borel measurable functions.


b.) If X = (X1,X2,…,Xn) has a density f(.) and each Xi has a density fi, i= 1,2,…,n ,
then show that X1,X2,…,Xn are independent if and only if 
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a.e. [λ] except possibly on the Borel set of Rn with Lebesgue measure zero.










                      (12+8)

21. a.) If Z is ġ measurable and Y and YZ are integrable, then show that 

     E ( YZ | ġ ) = Z E (Y | ġ) a.e. [P].

b.) Show that 
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 but the converse is not true. 









           (10+10)
22.  a.) State and prove Levy inversion theorem.

b.) Using Central limit theorem for suitable Poisson variable, prove that 
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